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A linear acoustic analysis has been conducted to study the combustion instability characteristics of three-

dimensional baffled combustion chambers. The theoretical formulation is based on a generalized wave equation.

Normal mode expansion and spatial averaging techniques are implemented to solve for the acoustic motions in the

chamber. Several specific effects of radial and circumferential baffles, and themechanisms bywhich baffles eliminate

combustion instabilities, are presented. Longitudinalization of transverse waves inside baffle compartments,

restriction of velocity fluctuations near the injector face, and reduction in oscillation frequency are studied

systematically. The effects of mean flow, temperature nonuniformities, and combustion response on the baffle design

and stability behaviors are investigated. Potential destabilizing influences of baffles are found to be the concentration

of acoustic pressure at the injector face andof acoustic velocity near the baffle tips, aswell as their ensuing interactions

with local combustion processes.

Nomenclature

�a = speed of sound in two-phase mixture
Ad = acoustic admittance function [Eq. (4)]
C = normal mode function coefficient [Eq. (21) or (30)]
Cf = coefficient, Eq. (12)
Ch = coefficient, Eq. (12)
CY = coefficient, Eq. (32)
E = defined in Eq. (48) or (55)
F = momentum equation source term
f = boundary condition in wave equation [Eq. (3)] or

frequency
Gh = defined in Eq. (82)
Gpq = defined in Eq. (52)
h = source term in wave equation [Eq. (2)]
Hmn = defined in Eq. (51)
I = defined in Eqs. (60)–(63)
Jm = mth order Bessel function of the first kind
kmn = eigenvalue of �m; n�th mode
L = chamber length
Lb = baffle blade length
�Lb = normalized baffle blade length, Lb∕Rc
M = total number of modes in main chamber
n = unit outward normal vector
P = energy equation source term
p = pressure
Q = total number of modes in baffle compartments
r = radial coordinate
r = position vector
Rb = radius of center baffle compartment
Rc = radius of main chamber
t = time
u = velocity of the gas phase
u = axial velocity
v = radial velocity

w = circumferential velocity
x = axial coordinate
y = transverse coordinate
Ym = mth-order Bessel function of the second kind
Z = impedance
α = axial wave number [Eq. (18) or (27)]
αb = ratio of sound speeds, �ab∕ �ac
β = reflection coefficient
γ = specific heat ratio for mixture
δkl = Kronecker delta
η = series coefficient of Fourier-type expansion
θ = circumferential coordinate
ρ = density of two-phase mixture
ψmn = normal mode function of �m; n�th mode
Ω = frequency

Overscripts, Superscripts, and Subscripts

b = baffle compartment
c = main chamber
I = injector face
m = circumferential direction mode in main chamber
N = chamber nozzle
n = radial direction mode in main chamber
p = circumferential direction mode in baffle compartments
q = radial direction mode in baffle compartments
T = transverse plane
μ = μth baffle compartment
− = mean quantity
0 = perturbation quantity
^ = fluctuation amplitude
� = downstream running wave
- = upstream running wave

I. Introduction

C OMBUSTION instabilities have been encountered in many
propulsion system development programs, including liquid

rocket engines [1–3], gas turbine engines [4], and solid rocket motors
[5,6]. They are characterized by an energy feedback loop between
acoustic oscillations and combustion responses, but can be addressed
through chamber design. For liquid-propellant rocket engines,
injector face baffles are widely used to provide a stabilizing effect on
transverse flow oscillations [7]. Figure 1 shows a typical baffle
configuration consisting of flat plates extending into the combustion
chamber perpendicularly from the injector face, arranged in a radial
and/or circumferential pattern. Radial baffles are oriented radially
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outward from the center of the injector face; circumferential baffles
are circular baffles of constant radius.
Several experimental investigations have produced results that

lend valuable insight into the stabilizing effect of baffles. Early
studies on the damping effect of baffles were limited to cold or non-
reacting flow experiments [8–10]. Wieber [8] studied the stabili-
zation effects of various baffle patterns in a combustion chamber with
no mean flow. The radial baffles distorted the acoustic mode shapes
by obstructing flow motion in the tangential direction and, hence,
damped the transverse oscillations much more effectively than the
longitudinal oscillations. The orientation of baffleswith respect to the
chamber acoustic fieldwas found to be important. Later reacting flow
experiments have yielded results applicable to practical rocket
engines. Laudien et al. [11] conducted both cold-flow and hot-flow
tests to study the effect of various passive instability-control devices
such as Helmholtz resonators and injector-face baffles. Radial baffles
with an odd number of blades were more effective than those with
an even number of blades in suppressing transverse instabilities. For
example, a three-bladed baffle was shown to damp the first and
second tangential modes, whereas a four-bladed baffle had no effect
on the second tangential mode. Furthermore, the decay rate of the
transverse oscillations grew with increasing baffle length. More
recent studies have been focused on active control of instabilities
[12,13]. The results of the present work could be used to facilitate the
development of these means of control.
Oefelein and Yang [14] gave a comprehensive review of the

experimental studies of baffle design performed under the F-1 engine
development program. More recently, Lee et al. [15] investigated the
effect of gaps on acoustic damping with injector-formed baffles.
Optimal gaps between injectors were found to maximize acoustic
damping due to random acoustic reflections and increased viscous
dissipation. The baffle length requirements (and related thermal
cooling problems) could be reduced by optimizing injector gaps.
Lubarsky et al. [16] studied the suppression of tangential instability
by insertion of an asymmetric baffle through a slit in the wall of a
combustion chamber. Partial insertion (10–30% of the chamber
diameter) of the baffle produced complete damping of the first
tangential mode. It was concluded that the instability suppressing
mechanism was an acoustic phenomenon. The effect of shifting the
flame zone from the injector face appeared to be limited.
Three main mechanisms have been proposed to explain the

stabilizing effect of baffles [17–19]: 1) modification of the acoustic
properties of the combustion chamber through reduction of the
frequencies and amplitudes of transverse oscillations; 2) protection of
sensitive combustion processes from acoustic flow motion in the
chamber; and 3) dissipation of acoustic wave energy through vortex
shedding and visco-acoustic interactions near the baffle blades. A
detailed reviewof the existing experimental and theoretical studies up
to the mid-1990s can be found in [19]. Wicker et al. [19] developed a
general theoretical framework for treating both linear and nonlinear
acoustic waves in baffled combustion chambers. Their results clearly
demonstrated the importance of the first two stabilizing mechanisms.
Inside baffle compartments, the transverse acoustic waves in the
combustion chamber were longitudinalized, a phenomenon which
becomesmore pronouncedwith increased baffle length. The acoustic
velocity was severely limited inside the baffle compartments.
Large variations in the acoustic velocity, however, were observed
immediately downstream of the baffle. The ensuing modifications of
the acoustic field in the flame zone thus affected the system stability

characteristics by changing the local combustion response. The
reduced oscillation frequencies also exerted a direct influence on
the stability contingent upon the frequency dependence of the
combustion response. Conditions for the existence of limit cycles
were obtained, along with explicit formulas for the oscillation
amplitudes and frequencies, in terms of linear and nonlinear
parameters.
Analytical approaches to date have only treated configurations

with radial blades in the chamber. In addition, the effects of mean
flow and combustion–acoustic coupling have largely been neglected.
In practice, many rocket engines have both radial and circumferential
baffles for stabilization. The latter help restrict radial modes of
instability [3,20,21] and are often arranged in the region where the
radial velocity amplitude is maximal. Several numerical studies have
been performed recently to treat both radial and circumferential
blades. Quinlan et al. [22] developed a numerical code that predicts
the stability of a combustion chamber with baffles and acoustic
cavities. The velocity potential was first obtained through an
eigenfunction expansion and then used as a basis to determine
the pressure interaction index and complex combustion response
through an iterative technique. Feng et al. [23] examined instabilities
in the YF-960 rocket engine using a finite-volume method. Two
different baffle configurationswere considered: 1) three radial blades
with a circular hub, and 2) six radial blades with a circular hub.
Quinlan et al. [24] numerically verified the experimental findings
of Lubarsky et al. [16] on the effects of asymmetric baffles. The
calculated acoustic frequencies matched experimental data closely,
and the 10% partial insertion was shown to be capable of disrupting
the first spinning tangential mode. It was also found that increasing
the baffle thickness decreased the oscillation frequencies.
The present study extends an earlier approach described in [19] to

theoretically investigate the acoustic waves in chambers containing
both radial and circumferential baffles, as shown schematically in
Fig. 1. The nonuniformity of the mean flowfield is accommodated in
a generalized framework. A large variation in temperature often
occurs as the mixture moves from the baffle compartments to the
main combustion chamber downstream. The ensuing change in the
speed of sound in the chamber has a significant impact on the acoustic
wave characteristics. This phenomenon is incorporated in the
formulation, and its effect on the chamber stability characteristics is
studied. The response of unsteady combustion to local acoustic
oscillations is modeled using both velocity- and pressure-coupled
response functions [25]. Following the methodology developed in
[19], a combinedmodal expansion and spatial averaging technique is
applied to solve the system of equations. Sample calculations are
performed to examine the effects of geometry, mean-flow variations,
and combustion response on the stability of baffled combustion
chambers. In addition, mechanisms by which baffles eliminate
combustion instabilities are explored.

II. Theoretical Formulation

A. Wave Equation

The acoustic motions in a chamber can be described by a
generalized wave equation [19,25,26]. The conservation equations
of mass, momentum, and energy are first formulated for the mixture
in the combustion chamber. Each dependent variable is then
decomposed as the sum of the mean and fluctuating components.
After substituting them in the conservation equations and rearranging
the result, a wave equation to first order is derived:

∇2p 0 −
1

�a2
∂2p 0

∂t2
� h (1)

The source term h has the form

h � hI � hII � hIII (2)

where

7
µ = 1

2
3

4

5 6

r

x

Lb

L

Rc
Rb

Baffle blade

Fig. 1 Schematic of a seven-baffle combustion chamber.
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hI � −∇
�
�ρ
∂u 0

∂t

�
− ∇��ρ� �u · ∇�u 0� − ∇��ρ�u 0 · ∇� �u�

− ∇
�
p 0

�a2
� �u · ∇� �u

�
� 1

�a2
∂
∂t
� �u · ∇p 0� � 1

�a2
∂
∂t
�u 0 · ∇ �p�

� �γ

�a2
∂
∂t
� �p∇ · u 0� � 1

�a2
∂
∂t
�p 0∇ · �u� (2a)

hII � ∇
�
�ρs 0

�Cp
� �u · ∇� �u

�
(2b)

hIII � −
1

�a2
∂
∂t
P 0 � ∇F 0 _Q 0 (2c)

The first termhI represents the linear gas dynamic effects. The second
term hII arises from entropy fluctuations. The third term hIII includes
two-phase interactions, viscous dissipation, and combustion heat
release.
The boundary condition for the wave equation is set using the

gradient of p 0, obtained by taking the scalar product of the outward
normal vector with the perturbed momentum equations:

n · ∇p 0 � −f � n

·

�
−�ρ

∂u 0

∂t
− �ρ� �u · ∇�u 0 − �ρ�u 0 · ∇� �u − ρ 0� �u · ∇� �u� F 0

�
(3)

Typically, this condition is treated using an acoustic admittance
functionAd, which relates the local velocity fluctuation to its pressure
counterpart:

Ad � n ·
u 0∕ �a
p 0∕γ �p

(4)

If the volumetric and boundary source terms are absent (i.e.,
h � f � 0), the undamped wave equation for pressure in classical
acoustics is recovered.

B. Mode Expansion and Spatial Averaging in the Transverse Plane

Because of the geometric complexity associated with baffles, a
direct treatment of the wave equation subject to the boundary
conditions appears to be a formidable challenge. The oscillatory field
is best constructed for the baffle compartments and themain chamber
separately, and thenmatched at the interface to determine the acoustic
waves over the entire chamber. For situations commonly observed in
most practical rocket engines in which the mean-flow Mach number
and variation of mean pressure in the radial and circumferential
directions are both small, the frequencies and spatial structures of
unsteadymotions on a transverse plane deviate only slightly from the
classical acoustic field obtained for the same geometry as the
combustion chamber butwithout any source terms. Thus, the solution
to thewave equation can be faithfully approximated by a synthesis of
the normal transverse acoustic modes [26]. Provisions are made to
allow large variations in mean-flow properties in the axial direction.
For linear analysis, all acoustic variables are assumed to vary in a
time-harmonic fashion. The acoustic pressure can be expressed as a
series of eigenfunctions for oscillations on the transverse plane, with
the axial variations expressed as the expansion coefficients [19]

p 0�r; t� � eiΩt
X∞
m�0

X∞
n�0
�η̂mn�x�ψmn�θ; r�� (5)

where Ω stands for the complex frequency of the oscillations. The
eigenfunction ψmn, also called the normal mode, satisfies the
Helmholtz equation on the transverse plane,

∇2
Tψmn � k2mnψmn � 0 (6)

where kmn is the wave number of the normal mode ψmn. The double
indices m and n correspond to the spatial variations in the
circumferential and radial directions, respectively. Equation (6) is
subject to the following boundary condition for a rigid surface along
the combustor wall:

n · ∇Tψmn � 0 (7)

The transverse Laplacian operation ∇2
T in cylindrical coordinates is

defined as

∇2
T �

1

r

∂
∂r

�
r
∂
∂r

�
� 1

r2
∂2

∂θ2
(8)

Multiplying Eq. (6) by p 0 and Eq. (1) by ψmn, subtracting the latter
from the former, and then integrating over the cross section results in

ZZ �
p 0∇2

Tψmn � p 0k2mnψmn − ψmn∇2p 0 � ψmn
1

�a2
∂2p 0

∂t2

�
ds

� −
ZZ

ψmnh ds (9)

Application of Green’s theorem and substitution of boundary
conditions from Eqs. (3) and (7) into Eq. (9) yields

ZZ �
p 0k2mnψmn − ψmn

∂2p 0

∂x2
� ψmn

1

�a2
∂2p 0

∂t2

�
ds

� −
ZZ

ψmnh ds −
I

ψmnfT dl (10)

where the line integral
H
dl is performed along the surface boundary

of the cross section, and fT � −n · ∇Tp 0. Substituting Eq. (5) into
Eq. (10) and rearranging the result leads to

d2η̂mn
dx2

�
�
Ω2

�a2
− k2mn

�
η̂mn

� 1RR
�ψmn�2 ds

�ZZ
ψmnĥ ds�

I
ψmnf̂T dl

�
(11)

The source terms ĥ and f̂T are functions of both the mean and
oscillatory flow properties. The latter consists of a series of transverse
acoustic modes. Because of the disparity in the length scales
associated with these modes, the acoustic mode coupling in the
source terms in Eq. (11) can be reasonably ignored. It can be shown
that the cross-coupling terms are much smaller, and only the specific
mode of concern dominates. Thus, to facilitate the formulation, the
surface and line integrals on the right-hand side of Eq. (11) can be
modeled as the products of the axial variation η̂mn and coefficients
Ch;mn and Cf;mn, respectively, which include all the distributed and
surface effects at a given cross section through spatial averaging:ZZ

ψmnĥ ds � Ch;mnη̂mn�x�
I

ψmnf̂T dl � Cf;mnη̂mn�x� (12)

Equation (11) now reduces to a second-order ordinary differential
equation with constant coefficients whose solution η̂mn�x� takes the
form

η̂mn�x� � p�mn exp�iα�mnx� � p−
mn exp�iα−mnx� (13)

where �pmn and p
�
mn are the complex amplitudes of the upstream and

downstream traveling waves, respectively. The axial wave number
α�mn is related to the frequencyΩ, eigenvalue kmn, and the source-term
coefficients by

�α�mn�2 �
Ω2

�a2
− k2mn − Ch;mn�α�mn; · · · � − Cf;mn�α�mn; · · · � (14)
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Through normal transverse-mode expansion, the solution to thewave
equation has been given in the form of Eq. (5), with the eigenfunction
provided by Eq. (6). The axial variation expressed in Eq. (13) is
derived by applying spatial averaging over each transverse plane. The
acoustic pressure in each cell can thus be explicitly expressed by
combining these results:

p 0�r; t� � eiΩt
X∞
m�0

X∞
n�0
�ψmn�θ; r��p�mneiα

�
mnx � p−

mne
iα−mnx�� (15)

The axial velocity fluctuation u 0 can be obtained from the linearized
axial momentum equation:

u 0�r; t� � −
1

�ρ

X∞
m�0

X∞
n�0

×
�
eiΩtψmn�θ; r�

�
α�mnp

�
mne

iα�mnx

Ω� �uα�mn
� α−mnp

−
mne

iα−mnx

Ω� �uα−mn

��
(16)

C. Acoustic Waves in Baffle Compartments and Main Chamber

The flow conditions in an operational liquid rocket engine are
complicated. To reduce the complexity arising in analyzing the
acoustic field, the current work deals only with cases in which the
mean-flow properties such as temperature and Mach number are
different in the baffle compartments and main chamber, but uniform
within each section. The oscillatory fields in these two regions are
treated separately and then matched at the interface to solve for the
acoustic motions in the entire combustor, as shown schematically in
Figs. 1 and 2.

1. Main Chamber

If the acoustic admittance at the wall is assumed to be zero, the
spatially varying function η̂mn in the main chamber can be written as

η̂mn�x� � p�mn exp�iα�mn�x − L�� � p−
mn exp�iα−mn�x − L�� (17)

where

α�mn �
1

1 − �M2
c

�
∓

�McΩ
�ac
�

��������������������������������������
Ω2

�a2c
− �1 − �M2

c�k2mn

s �
(18)

The subscript c stands for properties in the main chamber. The
acoustic boundary condition at the nozzle entrance can be
characterized by an admittance function defined as

Ad;N �
u 0∕ �a
p 0∕γ �p

����
x�L

(19)

This leads to a relationship between the constant coefficientsp�mn and
p−
mn:

βmn �
p−
mn

p�mn
� −

Ad;N � �acα
�
mn∕�Ω� �ucα

�
mn�

Ad;N � �acα
−
mn∕�Ω� �ucα

−
mn�

(20)

The transverse eigenfunctions for the main chamber are expressed in
terms of sinusoids and Bessel functions of the first kind,

ψmn�θ; r� � ψcmn�θ; r� � Cmnψ smn�θ; r� (21)

where

ψcmn�θ; r� � cos�mθ�Jm�kmnr� and

ψ smn�θ; r� � sin�mθ�Jm�kmnr� (22)

For a rigid chamberwall, the eigenvalue kmn can be obtained from the
following equation:

d

dr
Jm�kmnr� � 0 at r � Rc (23)

The pressure wave in the main chamber can then be written as

p 0c�r; t� � eiΩt
X∞
m�0

X∞
n�0

�
ψmn�θ; r�p�mn

eiα
�c
mn�x−L� � βmne

iα−mn�x−L�

eiα
�c
mn�Lb−L� � βmne

iα−mn�Lb−L�

�
(24)

From the linearized x-momentum equation, the axial velocity
fluctuation is obtained as follows:

u0c�r;t��−
eiΩt

�ρc

X∞
m�0

X∞
n�0

×
�

ψmn�θ;r�p�mn
eiα

�c
mn�Lb−L��βmne

iα−cmn�Lb−L�

�
α�mne

iα�mn�x−L�

Ω� �ucα
�
mn

�βmnα
−
mne

iα−mn�x−L�

Ω� �ucα
−
mn

��

(25)

2. Baffle Compartment

The solution to Eq. (11) for the baffle compartments takes the form

η̂μpq�x� � p�μpq exp�iα�μpq x� � p−μ
pq exp�iα−μpqx� (26)

where

α�μpq �
1

1 − �M2
b

�
∓

�MbΩ
�ab
�

��������������������������������������
Ω2

�a2b
− �1 − �M2

b�k2pq

s �
(27)

The superscript μ, subscript b, and indices p and q stand for the μth
baffle compartment, properties in the baffle compartment, and spatial
variations in the circumferential and radial directions, respectively.
The acoustic boundary condition at the injector face is characterized
by an admittance function defined as

Ad;I �
u 0∕ �a
p 0∕γ �p

����
x�0

(28)

This gives a relationship between the constant coefficients p�μpq and
p−μ
pq:

βμpq �
p−μ
pq

p�μpq
� −

Ad;I � �abα
�μ
pq ∕�Ω� �ubα

�μ
pq �

Ad;I � �abα
−μ
pq∕�Ω� �ubα

−μ
pq�

(29)

Owing to the boundary conditions associated with both radial and
circumferential baffle blades, the eigenfunctions in the baffle
compartments are distinct from their counterparts in [19], which deal
only with radial blades. For the μth baffle compartment, writing

ψμ
pq�θ; r� � ψμc

pq�θ; r� � Cμ
pqψ

μs
pq�θ; r� (30)

the eigenfunction for the peripheral baffle compartments (e.g.,
μ � 1; 2; : : : ; 6 in Fig. 1) thus becomes

ψμc
pq�θ; r� � cos

�
pN

2
θ

�
�JpN∕2�kpNq∕2r� � CYpqYpN∕2�kpNq∕2r��

ψμs
pq�θ; r� � 0 (31)

where N denotes the total number of radial baffle blades and Y is the
Bessel function of the second kind. The coefficientCYpq is defined as

CYpq � −
�
dJpN∕2�kpNq∕2r�∕dr
dYpN∕2�kpNq∕2r�∕dr

�
r�Rc

(32)

The eigenvalues can be determined by applying the boundary
condition, Eq. (7):
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�
dJpN∕2�kpNq∕2r�

dr

����
r�Rc

·
dYpN∕2�kpNq∕2r�

dr

����
r�Rb

�

−
�
dJpN∕2�kpNq∕2r�

dr

����
r�Rb

·
dYpN∕2�kpNq∕2r�

dr

����
r�Rc

�
� 0 (33)

For the center baffle compartment (μ � 7),

ψμc
pq�θ; r� � cos�pθ�Jp�kpqr� and

ψμs
pq�θ; r� � Cμ

pq sin�pθ�Jp�kpqr� (34)

The eigenvalue can be obtained by

d

dr
Jp�kpqr� � 0 at r � Rb (35)

Therefore, the acoustic pressure and velocity waves in the baffle
compartment can be expressed as

p 0μ�r; t� � eiΩt
X∞
p�0

X∞
q�0

�
ψμ
pq�θ; r�p�μpq

eiα
�μ
pq x � βμpqeiα

−μ
pqx

eiα
�μ
pq Lb � βμpqeiα

−μ
pqLb

�
(36)

u 0μ�r; t� � −
eiΩt

�ρb

X∞
p�0

X∞
q�0

×
�

ψμ
pq�θ; r�p�μpq

eiα
�μ
pq Lb � βμpq;μeiα

−μ
pqLb

�
α�μpq eiα

�μ
pq x

Ω� �ubα
�μ
pq

�
βμpq;μα−pqe

iα−μpqx

Ω� �ubα
−μ
pq

��
(37)

3. Matching at the Interface

The oscillatory fields in the baffle compartments and main
chamber are matched at the interface (x � Lb) to determine thewave

characteristics in the entire system. The matching conditions require
continuities of mass and momentum fluxes throughout the interface:
Mass flux is given by

�ρμuμ�jx�L−
b
� �ρcuc�jx�L�

b
(38)

Momentum flux is given by

�pμ � ρμu
2
μ�jx�L−

b
� �pc � ρcu

2
c�jx�L�

b
(39)

Decomposing the variables into mean and fluctuating components
and subsequently linearizing results in

��ρμu 0μ � ρ 0μ �uμ�jx�L−
b
� ��ρcu 0c � ρ 0c �uc�jx�L�

b
(40)

�p 0μ � 2�ρμ �uμu
0
μ � ρ 0μ �u

2
μ�jx�L−

b
� �p 0c � 2�ρc �ucu

0
c � ρ 0c �u

2
c�jx�L�

b

(41)

The velocity and density disturbances can be related to the pressure
fluctuations through the acoustic impedance and the speed of sound
as follows:

u 0 ∼ p 0∕�ρ �a; ρ 0 ∼ p 0∕ �a2 (42)

The order of magnitude of each term in Eqs. (40) and (41) becomes,
respectively,

�ρu 0 ∼ p 0∕ �a; ρ 0 �u ∼ �Mp 0∕ �a (43)

�ρ �u u 0 ∼ p 0 · �M; ρ 0 �u2 ∼ p 0 · �M2 (44)

For low-speed flows, such as those encountered in most liquid rocket
engines, terms with order of magnitude �M2 can be neglected.
Equation (41) can be simplified to

�p 0μ � 2�ρμ �uμu
0
μ�jx�L−

b
� �p 0c � 2�ρc �ucu

0
c�jx�L�

b
(45)

Multiplying Eq. (45) by ψμc
pqrdrdθ and ψμs

pqrdrdθ, respectively, and
integrating the results over each corresponding baffle compartment,
the following is obtained using the orthogonality of eigenfunctions:

X∞
m 0�0

X∞
n 0�0

�
p�m 0n 0

�ZZ
ψm 0n 0ψ

μc
pqr dr dθ

�
Rm 0n 0

�
� p�μpq · Eμc

pq · S
μ
pq

(46)

X∞
m 0�0

X∞
n 0�0

�
p�m 0n 0

�ZZ
ψm 0n 0ψ

μs
pqr dr dθ

�
Rm 0n 0

�

� p�μpq · Eμs
pq · C

μ
pq · S

μ
pq (47)

where

(
Eμc
pq �

R Rc
Rb

R 2πμ∕N
2π�μ−1�∕N �ψ

μc
pq�2r dr dθ �peripheral compartments�

Eμc
pq �

R Rb
0

R
2π
0 �ψ

μc
pq�2r dr dθ and Eμs

pq �
R Rb
0

R
2π
0 �ψ

μs
pq�2r dr dθ �center compartments�

(48)

Rm 0n 0 � �1 − 2 �ucHm 0n 0 � (49)

Sμpq � �1 − 2 �ubG
μ
pq� (50)

and

Hmn �
1

eiα
�
mn�Lb−L� � βmne

iα−mn�Lb−L�

·

�
α�mne

iα�mn�Lb−L�

Ω� �ucα
�
mn

� βmnα
−
mne

iα−mn�Lb−L�

Ω� �ucα
−
mn

�
(51)

Gμ
pq �

1

eiα
�μ
pq Lb � βμpqeiα

−μ
pqLb

·

�
α�μpq eiα

�μ
pq Lb

Ω� �ubα
�μ
pq

� βμpqα
−μ
pqeiα

−μ
pqLb

Ω� �ubα
−μ
pq

�
(52)

Similarly, multiplying Eq. (40) by ψcmnrdrdθ and ψ smnrdrdθ,
respectively, and integrating the results over the entire cross section of
the main chamber yields
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p�mn · E
c
mn · Umn �

X∞
p�0

X∞
q�0

XN
μ�1

�
Vμ
pqp

�μ
pq

�ZZ
ψμc
pqψcmnr dr dθ

��

(53)

p�mnCmn · E
s
mn · Umn

�
X∞
p�0

X∞
q�0

XN
μ�1

�
Vμ
pqp

�μ
pq

�ZZ
ψμc
pqψ smnr dr dθ

��
(54)

where

Ecmn �
Z
Rc

0

Z
2π

0

�ψcmn�2r dr dθ and

Esmn �
Z
Rc

0

Z
2π

0

�ψsmn�2r dr dθ (55)

Umn � �Hmn − �Mc∕ �ac� (56)

Vμ
pq � �Gμ

pq − �Mb∕ �ab� (57)

Equation (21) is substituted into Eqs. (46) and (47) to obtain

p�μpq �
1

Eμc
pq · S

μ
pq

X∞
m 0�0

X∞
n 0�0
�p�m 0n 0 �I

μc;c
pq;m 0n 0 � Cm 0n 0I

μc;s
pq;m 0n 0 �Rm 0n 0 �

(58)

pμs
pq �

1

Eμs
pq · S

μ
pq

X∞
m 0�0

X∞
n 0�0
�p�m 0n 0 �I

μs;c
pq;m 0n 0 � Cm 0n 0I

μs;s
pq;m 0n 0 �Rm 0n 0 �

(59)

where the coefficients are defined as

Iμc;cpq;m 0n 0 �
ZZ

ψcm 0n 0ψ
μc
pqr dr dθ (60)

Iμc;spq;m 0n 0 �
ZZ

ψ sm 0n 0ψ
μc
pqr dr dθ (61)

Iμs;cpq;m 0n 0 �
ZZ

ψcm 0n 0ψ
μs
pqr dr dθ (62)

Iμs;spq;m 0n 0 �
ZZ

ψ sm 0n 0ψ
μs
pqr dr dθ (63)

and

pμs
pq � Cμ

pqp
�μ
pq (64)

Plugging Eq. (30) into Eqs. (53) and (54) results in

p�mn �
1

EcmnUmn

X∞
p�0

X∞
q�0

XN
μ�1
�Vμ
pqp

�μ
pq �Iμc;cpq;mn � Cμ

pqI
μs;c
pq;mn�� (65)

psmn �
1

EsmnUmn

X∞
p�0

X∞
q�0

XN
μ�1
�Vμ
pqp

�μ
pq �Iμc;spq;mn � Cμ

pqI
μs;s
pq;mn�� (66)

where

psmn � Cmnp�mn (67)

Equations (58) and (59) are substituted into Eqs. (66) and (67) to
obtain

p�mn �
X∞
p�0

X∞
q�0

XN
μ�1

X∞
m 0�0

X∞
n 0�0

Vμ
pqRm 0n 0

EcmnUmnS
μ
pq

×
�
p�m 0n 0

�
Iμc;cpq;mnI

μc;c
pq;m 0n 0

Eμc
pq

�
Iμs;cpq;mnI

μs;c
pq;m 0n 0

Eμs
pq

�

� psm 0n 0
�
Iμc;cpq;mnI

μc;s
pq;m 0n 0

Eμc
pq

�
Iμs;cpq;mnI

μs;s
pq;m 0n 0

Eμs
pq

��
(68)

psmn �
X∞
p�0

X∞
q�0

XN
μ�1

X∞
m 0�0

X∞
n 0�0

Vμ
pqRm 0n 0

EsmnUmnS
μ
pq

×
�
p�m 0n 0

�
Iμc;spq;mnI

μc;c
pq;m 0n 0

Eμc
pq

�
Iμs;spq;mnI

μs;c
pq;m 0n 0

Eμs
pq

�

� psm 0n 0
�
Iμc;spq;mnI

μc;s
pq;m 0n 0

Eμc
pq

�
Iμs;spq;mnI

μs;s
pq;m 0n 0

Eμs
pq

��
(69)

The combination of the preceding two equations leads to a system of
equations in terms of the series coefficients for the main chamber,

�F�
�
p�

ps

�
�

2
66666666666664

fa11 fa12 · · · fa1M fb11 fb12 · · · fb1M
fa21 fa22 · · · fa2M fb21 fb22 · · · fb2M

..

.

faM1 faM2 · · · faMM fbM1 fbM2 · · · fbMM
fc11 fc12 · · · fc1M fd11 fd12 · · · fd1M
fc21 fc22 · · · fc2M fd21 fd22 · · · fd2M

..

.

fcM1 fcM2 · · · fcMM fdM1 fdM2 · · · fdMM

3
77777777777775

2
66666666666664

p�1
p�2
..
.

p�M
ps1
ps2
..
.

psM

3
77777777777775
� 0

(70)

where

fak;k 0 �
XN
μ�1

XQ
l�0

Vμ
l Rk 0

EckUkS
μ
l

�
Iμc;cl;k I

μc;c
l;k 0

Eμc
l

�
Iμs;cl;k I

μs;c
l;k 0

Eμs
l

�
− δkk 0 (71)

fbk;k 0 �
XN
μ�1

XQ
l�0

Vμ
l Rk 0

EskUkS
μ
l

�
Iμc;cl;k I

μc;s
l;k 0

Eμc
l

�
Iμs;cl;k I

μs;s
l;k 0

Eμs
l

�
(72)

fck;k 0 �
XN
μ�1

XQ
l�0

Vμ
l Rk 0

EckUkS
μ
l

�
Iμc;sl;k I

μc;c
l;k 0

Eμc
l

�
Iμs;sl;k I

μs;c
l;k 0

Eμs
l

�
(73)

fdk;k 0 �
XN
μ�1

XQ
l�0

Vμ
l Rk 0

EskUkS
μ
l

�
Iμc;sl;k I

μc;s
l;k 0

Eμc
l

�
Iμs;sl;k I

μs;s
l;k 0

Eμs
l

�
− δkk 0 (74)

To simplify the notation, the double indices such as pq have been
replaced by single indices; that is,mn by k,pq by l, andm 0n 0 by k 0. In
this system, the limits of k and l are M and Q, respectively,
representing the numbers of eigenfunctions of Eqs. (21) and (30) in
the series expansions for the main chamber and baffle compartments,
respectively. For nontrivial solutions to �p� ps �T , the determinant
of the coefficient matrix of Eq. (70) must vanish, giving

det jF�Ωmn�j � 0 (75)
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Although no simple expression for Ω can be derived from Eq. (75),
the functional dependence can be graphically investigated over some
region in the complex Ω plane. By plotting the magnitude of det jFj
over the frequency region of interest and graphically identifying the
points at which det jFj vanishes, a close estimation of the modal
frequencies can be achieved. Using these values as initial guesses,
each eigenvaluemay be found to a desired level of accuracy by secant
iteration of the complex det jFj over the complex frequency plane.
The series coefficients �p� ps �T can be determined from Eq. (70)
once the frequency is known.

III. Results and Discussion

A. Combustion Chambers with Radial Baffles

To focus on the effect ofmean-flowproperties on the acoustic field,
a relatively simple geometry, a cylindrical chamber with only three
radial baffles, as shown in Fig. 2, is considered. The influence of
baffle length, mean-flow Mach number, and the temperature ratio
between the baffle compartment and main chamber on the acoustic
field in the entire chamber is studied. The situation with combustion
response is also examined. The chamber geometry and operating
parameters are summarized in Table 1.
The first case provides basic understanding of baffle effects on the

acoustic field in the combustion chamber.Noheat release is considered
to avoid complications arising from combustion response. Figure 3
presents the acoustic pressure and velocity contours of the first
tangential mode at various cross sections. Here, the nth transverse
mode refers to thewave characteristics in the far downstream region of
the baffled chamber that most closely resembles the nth transverse
mode in an equivalent unbaffled chamber. To solve for this nth mode,
the numberM in Eq. (70) is set to be n. The mode numbers in baffle
compartments in the circumferential and radial directions are selected
to bep � 0; 1; 2; : : : ; 10 andq � 0; 1; 2; : : : ; 10. These numbers are
also used in the subsequent cases. The wave pattern resembles a
classical tangential mode in the downstream end of the chamber, but
becomes distorted near the baffle tips. It finally reaches a symmetric

pattern with respect to the θ � 0 blade at the injector face. The
magnitudes of acoustic velocities in the baffle compartments are
substantially limited. It is well established [2,3] that the transverse
velocity components exert a strong effect on such combustion
processes as atomization, mixing and flame stabilization and
spreading. The decrease in the acoustic velocity magnitudes helps
stabilize a system with a velocity-sensitive combustion response.
Figure 4 shows the pressure and velocity distributions on various

azimuthal planes (θ � 0, 60, 180 and 240 deg). High-amplitude
pressure oscillations are clearly observed near the injector face. A
major factor contributing to this phenomenon is the longitudinaliza-
tion of transverse acoustic waves, which creates a pressure antinode
at the injector face [19]. This can be a potential source of instability if
the combustion is pressure sensitive in that region. At θ � 240 deg
where there is a baffle blade, large pressure gradients appear near the
baffle tips, thereby inducing intense acoustic velocities. The resultant
velocity-coupled combustion response may destabilize the system.

1. Effect of Baffle Length

The effect of baffle length on the acoustic field is examined. As a
specific example, case 2 is considered. Figure 5 shows the acoustic
pressure fields of the first transverse mode for three different baffle
lengths. When the baffle length is increased, the acoustic wave is
progressively longitudinalized in the baffle compartments, especially
between θ � 120 and 240 deg, as shown in Fig. 5. Such a change can
strongly affect system stability through the combustion response to
pressure oscillations.
Dranovsky et al. [3] developed an approximate relationship

between the acoustic frequencies and baffle length. The derivation is
given in the Appendix. Using the notation employed in the present
work, the frequency of the acoustic waves in the baffled chamber can
be written as

tan

�
Rckmn �Lb �Ωmn

αb

�
� Sc �ρc �ac �Ωmn
Sb �ρb �ab

�����������������
1 − �Ω2

mn

p (76)

µ = 1

2

3

r

x

Lb

L

Rc

Baffle blade

Fig. 2 Schematic of a three-baffle combustion chamber.

Table 1 Chamber dimensions and
operating parameters

Case L∕Rc Lb∕Rc �ab∕ �ac �Mb
�Mc

1 2.5 0.4 1 0 0
2 2.5 0–0.8 1 0 0
3 2.5 0.4 0.5 0 0
4 2.5 0.4 1.5 0 0
5 2.5 0.4 0.5–1.5 0 0
6 2.5 0.4 1 0–0.5 0–0.5

-0.8

0.0

0.4

0.6

0.2

0.8

x/Rc = 0

-0.8

-0.6

-0.2

0.0

0.4

0.6
0.8

x/Rc = 0.39

-0.8

-0.4

0.0

0.4

0.6

0.8

x/Rc = 0.41

-0.4
-0.2

0.0

0.2
0.4

x/Rc = 2.5

x/Rc = 0.00 x/Rc = 0.39 

x/Rc = 0.41 x/Rc = 2.50 

x/Rc = 0 x/Rc = 0.39

x/Rc = 0.4 x/Rc = 2.5

x/Rc = 0.00 x/Rc = 0.39 

x/Rc = 0.41 x/Rc = 2.50 

Fig. 3 Acoustic pressure and velocity distributions of first tangential mode at various cross sections in a three-baffle chamber (case 1:Lb∕Rc � 0.4 and
�ab∕ �ac � 1.0).

YOU, KU, ANDYANG 1459

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

D
ec

em
be

r 
19

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.B

34
92

3 



where �Lb � Lb∕Rc denotes the normalized baffle length, �Ωmn �
Ω∕�kmn �ac� the normalized frequency of the �m; n�th transverse
mode, and αb � �ab∕ �ac the ratio of sound velocity in the baffle
compartment to that in themain chamber. Equation (76) indicates that
the acoustic frequency depends intimately on the baffle length, ratio
of speeds of sound, acoustic impedance �ρ �a, and chamber geometry.
As the baffle length tends to zero, the transverse-mode frequency
approaches that of an unbaffled combustion chamber.
Figure 6 shows the frequency of the first tangential mode,

normalized by that of an unbaffled chamber (Rckmn � 1.84) as a
function of normalized baffle length. The gas properties in the baffle

compartments are assumed to be identical to those in the main
chamber; that is, �ab � �ac and Sb �ρb �ab � Sc �ρc �ac. The solid line is the
analytical solution predicted by Eq. (76), and the symbols are the
results from the present analysis. The normalized frequency
decreases with increasing baffle length due to enhanced longitudi-
nalization of the acoustic waves in the baffle compartments. The
analytical solution assumes complete longitudinalization and thus
overpredicts the reduction in frequencywith increasing baffle length.
A similar observation of frequency decrease was made previously
[19] for transverse waves in both two-dimensional and three-
dimensional chambers. This phenomenon can be attributed to the fact
that the acoustic wavefront must travel over a greater distance in a
baffled chamber because thewave front must turn 180 deg around the
baffle. The turning of the wavefront can also be observed in the
velocity vector plot, as shown in Figure 4.
The baffle-induced decrease of oscillation frequency may

significantly affect combustion response through its modulated
frequency. If the unbaffled acoustic frequency is lower than the
frequency at which the combustion response retains its maximum
fc;max (as illustrated by scenario 1 in Fig. 7), then adding baffles has a
stabilizing effect. The situation, however, becomes different if the
frequency exceeds fc;max (scenario 2). Baffles may exert either a
stabilizing or a destabilizing effect, depending on their length.
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c 

Fig. 4 Acoustic pressure and velocity distributions of first tangential mode on various azimuthal planes (constant θ) planes in a three-baffle chamber
(case 1: Lb∕Rc � 0.4 and �ab∕ �ac � 1.0).
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Fig. 5 Effect of baffle length on acoustic pressure field in a three-baffle
chamber, first transverse mode (case 2: �ab∕ �ac � 1.0).
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Fig. 6 Effect of baffle length on oscillation frequency in a three-baffle
chamber, first transverse mode (case 2: �ab∕ �ac � 1.0).
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2. Effect of Temperature Variation

Cases 3 and 4 in Table 1 are concerned with the effect of a
nonuniformmean temperature distribution. Such a temperature effect
is mainly exhibited by the variation of the sound speed in the
chamber. The case of αb < 1 is typical for main combustion
chambers, whereas αb > 1 commonly occurs in preburners in which
cold propellants are injected downstream of the baffles [3]. Examples
of such preburners include those on the RD-120 and RD-170 engines

employing oxygen-rich staged-combustion cycles. Figure 8 presents
the acoustic pressure and velocity contours of the first tangential
mode at various cross sections for αb � 0.5 corresponding to a
temperature ratio of 0.25. The acoustic wave structure within baffle
compartments is similar to the situation with a uniform temperature
distribution (case 1), shown in Fig. 3. The velocity oscillation,
however, decreases significantly toward the downstream end of the
chamber. The overall velocity magnitude in the baffle compartments
is also reduced. This phenomenon can be explained by evaluating the
characteristic acoustic impedance �ρ �a. The higher impedance in the
main chamber leads to lower velocity fluctuations.
In gas generators or preburners, the combustion products are often

cooled by injection of cold propellants to prevent adverse heat
transfer to turbine blades. The ratio of sound speeds becomes greater
than unity. Case 4 (αb � 1.5) was selected for a sample calculation.
Figure 9 shows the acoustic pressure and velocity fields. The pressure
oscillations at various cross sections behave like a perfect first
tangential mode in the downstream end of the chamber, but are
attenuated closer to the injector face. In contrast to case 3, the acoustic
impedance is lower downstream, resulting in higher velocity
oscillations in the main chamber and lower velocity oscillations near
the injector face.
Figure 10 compares the acoustic pressure distributions on the

r � R∕2 cylindrical surface for the two different ratios of sound

21

fc,max

Frequency

C
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bu
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n 

R
es
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ns

e

Fig. 7 A hypothetical frequency spectrum of combustion response.
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Fig. 8 Acoustic pressure and velocity distributions of first tangential mode at various cross sections in a three-baffle chamber (case 3:Lb∕Rc � 0.4 and
�ab∕ �ac � 0.5).
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�ab∕ �ac � 1.5).
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speeds. For αb � 0.5, the amplitude of pressure fluctuations decrease
significantly as the wave propagates downstream, presenting a
longitudinal behavior in baffle compartments. For αb � 1.5, on the
other hand, the pressure oscillations behave like the first tangential
mode in the entire chamber. Such a contrast can be explained as
follows. Themagnitudes of the reflection and transmission of a plane
wave propagating across the interface between two different media
(baffle compartments and main chamber) are given by

p−
μ

p�μ
� ��ρc �ac�∕��ρb �ab� − 1

��ρc �ac�∕��ρb �ab� � 1
and

p 0c
p�μ
� 2��ρc �ac�∕��ρb �ab�
��ρc �ac�∕��ρb �ab� � 1

(77)

Substituting the value of the sound-speed ratio into the preceding
equations, the following is obtained:

p 0c
p�μ
�
�
0.67; αb � 0.5

2; αb � 1.5
(78)

Equation (78) shows that the amplitude of the transverse wave
transmitted across the interface is reduced for case 3 (αb � 0.5) but
amplified for case 4 (αb � 1.5). The result is consistent with that
shown in Fig. 10. The pressure oscillations decrease near the injector
face for case 4. The same trend was observed with velocity
oscillations in Fig. 8 due to reduced wave reflection.
Figure 11 shows the effect of the sound-speed ratio on the

normalized oscillation frequency in a three-baffle chamber for the
first transverse mode. The frequency increases with increasing
sound-speed ratio. The trend can be also predicted qualitatively by
Eq. (76). For a given speed of sound in themain chamber, the acoustic

frequency increases with increasing αb. The existence of baffles has a
stronger effect on both the oscillation frequency and mode shape of
the acoustic field in the main combustion chamber (where αb < 1)
than in a gas generator (where αb > 1 due to downstream injection
cooling).

3. Effect of Mean Flow Velocity

The mean-flow Mach number in a rocket combustion chamber is
typically so low that it has negligible impact on the linear acoustic
field. The mean flow, however, may play an important role in
determining nonlinear stability behaviors and energy transfer [27–
29]. Acoustic oscillations can receive energy from the mean flow and
grow into finite amplitude limit cycles [30]. Figure 12 shows the
effect of the mean-flowMach number on the oscillation frequency in
a three-baffle chamber for the first transverse mode. The frequency
decreases as the Mach number increases. The modifications in the
acoustic pressure and velocity distributions by the mean flow appear
to be negligible in the present case.

4. Effect of Combustion Response

All the preceding cases are pure acoustic problems; the effect of
combustion response has not yet been considered. The interactions
between unsteady heat release and flow oscillations are discussed
here, which can be generally modeled by the source term hIII in
Eq. (2c). Ignoring the gas dynamic effect and focusing only on
unsteady heat release,

h � −�γ − 1�iΩ _Q 0∕ �a2 (79)

the oscillatory heat-release rate _Q 0 is related to local pressure and
velocity fluctuations as follows [25],

_Q 0

�Q
� Rp

p 0

�p
� Ru

u 0

�a
� Rv

v 0

�a
� Rw

w 0

�a
(80)

where Rp and Ru, Rv, and Rw are complex variables commonly
referred to as the pressure- and velocity-coupled response functions,
respectively. Substitution of the oscillatory flow properties from
Eqs. (15) and (16) into Eq. (80) and application of Eq. (12) yields

C�h;mn �
ZZ

ψmnG
�
h;mn ds (81)

where

G�h;mn � −
i�γ − 1�Ω �Q

�ρ �a2
·

�
Rp �ρ

�p
ψmn −

Ruα
�
mnψmn

�a�Ω� �uα�mn�

� iRv
�a�Ω� �uα�mn�

∂ψmn
∂r

−
mRwψmn

�ar�Ω� �uα�mn�

�
(82)

/ 0.5b ca a =

/ 1.5b ca a =
0.60.4
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Fig. 10 Acoustic pressure distributions of first tangential mode on
r � R∕2 cylindrical surface in a three-baffle chamber of different baffle
lengths (Lb∕Rc � 0.4).
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The formulation is thus closed once the combustion response
functions are known. Several empirical and analytical models,
including time lag [25,30] and flame-response [31] models, have
been developed and employed to represent the combustion
responses. In the present study, constant response functions are
applied within the baffle compartments.
The sample calculations are performed for a chamber with three

radial baffles, as shown in Fig. 2. The sound-speed ratio αb between
the baffled compartments and main chamber is 0.75. Combustion
heat release is assumed to be uniformly distributed within the baffle
compartments. The inlet Mach number is 0.15. For comparison, the
acoustic characteristics of an unbaffled chamber are calculated. The
combustion zone spans a length ofLcomb � 0.4L. The effect of baffle
length is then investigated with different response functions. Table 2
summarizes the chamber geometries and operating conditions
examined. The response functions Rp and Ru are chosen to ensure
unstable responses with semi-arbitrary amplitudes.

Figure 13 shows the first tangential mode in the chamber without
baffle blades (case 7). A pressure-coupled combustion response was
applied in this case. Similar to case 3, the amplitude of the transverse
wave across the interface was attenuated. The calculated imaginary
part of the complex frequency was found to be negative, indicating
that the oscillations were unstable.
Cases 8–10 involve three radial baffles. The acoustic pressure

wave is longitudinalized in the baffle compartments to satisfy the
boundary condition. Figure 14 depicts the acoustic pressure fields
on the r � R∕2 cylindrical surface for different baffle lengths.
The calculated oscillations are unstable for all these cases due to
the intensive pressure field near the injector face. Because pressure-
sensitive combustion is responsible for the instability, such con-
centration of the pressure oscillation near the injector face further
enhances the destabilizing effect.
Cases 11–13 treat velocity-coupled combustion responses. With

Lb∕Rc � 0.1 (case 11), the oscillations are unstable only for short

Table 2 Chamber geometry and combustion response functions for different cases

Case Unbaffled chamber Chamber with three radial baffles

7 8 9 10 11 12 13

Lb∕Rc 0 0.1 0.4 0.8 0.1 0.4 0.8
Rp 0.5–0.5i 0.5–0.5i 0.5–0.5i 0.5–0.5i 0 0 0
Ru 0 0 0 0 0.5–0.5i 0.5–0.5i 0.5–0.5i
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Fig. 13 Acoustic pressure distributions of first tangential mode on
constant azimuthal planes (θ � 0 and 180 deg) in an unbaffled chamber
(case 7: �ab∕ �ac � 0.75 and Rp � 0.5–0.5i).
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Fig. 14 Acoustic pressure distributions of first tangential mode on
r � R∕2 cylindrical surface in a three-baffle chamber (cases 8–10:
Lb∕Rc � 0.1, 0.4 and 0.8, �ab∕ �ac � 0.75, and Rp � 0.5–0.5i).
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Fig. 15 Acoustic velocity distributions of first tangential mode on
constant azimuthal planes in a three-baffle chamber (cases 11–13:
Lb∕Rc � 0.1, 0.4 and 0.8, �ab∕ �ac � 0.75, and Ru � 0.5–0.5i).
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baffles. Longer baffles tend to stabilize oscillatingmotions. Figure 15
shows the acoustic velocity distributions on constant azimuthal
planes. Large velocity fluctuations exist immediately downstream of
the baffle blades in spite of their limited amplitudes inside the baffle
compartments. Near the injector face, the combined effect of baffle
length and higher acoustic impedance (αb � 0.75) tends to attenuate
velocity fluctuations. Downstream of the baffle tips, however, the
wave tuning along with decreased acoustic impedance gives rise to
intensified velocity fluctuations. It is further observed that the
velocity oscillations near the baffle tips are amplified with increasing
baffle length. This may be attributed to the penetration of the blades
into the chamber where the acoustic velocity inherently has a higher
magnitude. In cases 12 and 13, the first tangential mode is unstable
due to increased velocity fluctuations and subsequent combustion
responses near the baffle tips.

B. Acoustic Field in a Chamber with Radial
and Circumferential Baffles

The acoustic fields in chambers with both radial and
circumferential baffles are studied. As an example, the main com-
bustor of the RD-120 rocket engine is considered. It contains one
center and six peripheral baffle compartments, as shown in Fig. 1.
The chamber geometry and speed of sound are given in Table 3.
Figures 16–19 present the acoustic pressure and velocity fields of

the first tangential, second tangential, first radial, and mixed first
tangential–radial mode, respectively. The combustion chamber has a
relatively short aspect ratio and baffle length compared to the three-
baffle combustor studied earlier. The influence of the baffles on the
acoustic field is thus not significant except for regions near the baffle
blades. For both the transverse and radial modes, the transverse
velocity oscillations decrease in the baffle compartments and then
increase just downstream of the interface. If velocity-sensitive
combustion response prevails in the near field around the baffle tips,
then the baffles act as a destabilizing device. For the first and second
tangential modes, the pressure and velocity fields in the center
compartment near the injector face seem unaffected by the presence
of the baffles. In the outer compartments, the pressure distribution has
been modulated and the velocity distribution has improved. The
opposite is observed for the first radial mode in Fig. 18. The pressure
and velocity fields are intensified in the center compartment and
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Fig. 16 Acoustic pressure and velocity distributions of first tangentialmode at various cross sections in seven-baffle chamber (RD-120main combustor).
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Fig. 17 Acoustic pressure and velocity distributions of second tangential mode at various cross sections in seven-baffle chamber (RD-120 main
combustor).

Table 3 Chamber geometry and speed of sound
of RD-120 main combustor

Rc, m Rb, m L, m Lb, m a, m∕s
0.32 0.18 0.1872 0.03 1900
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weakened in the peripheral compartments. Thus, the baffle
arrangement could destabilize combustion for the first radial mode
if the combustion response is velocity sensitive.

IV. Conclusions

A linear analysis of acoustic waves in baffled combustion
chambers was performed using a perturbation–expansion technique.
The formulation was based on a generalized wave equation derived
from the conservation equations for a two-phase mixture, and
includes effects of gas dynamics and combustion responses. Various
underlying mechanisms by which baffles eliminate combustion
instabilities in two-dimensional chambers are first explained,
including longitudinalization of transverse waves within baffle
compartments, restriction of velocity fluctuations near the injector
face, and reduction in the oscillation frequency. Baffles are also found
to present at least one potentially destabilizing effect: concentration
of acoustic pressure near the injector face. For three-dimensional
chambers with only radial baffles, similar effects of baffle blades on
chamber stability are observed. Longitudinalization of acoustic
waves, however, is not obvious in three-dimensional chambers with
both radial and circumferential blades. For pure tangential modes, the
acoustic pressure in the center baffle compartment remains almost
identical to that in an unbaffled chamber. The pressure oscillations
in the peripheral compartments are confined whereas the acoustic
velocity is enhanced. The chamber stability characteristics depend on
the sensitivities of the combustion response to acoustic motion. For a

pure radial mode, both pressure and velocity fluctuations increase in
the center cavity, suggesting a destabilizing influence on the chamber
stability.
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Appendix A: Frequencies of Acoustic Waves
in Baffled Chambers

Recall Eqs. (15) and (16) for acoustic pressure and velocity.
If the inhomogeneous term in the wave equation contains uniform

mean flow only, the wave number α�mn can be determined by

α�mn �
1

1 − �M2

�
∓

�MΩ
�a
�

��������������������������������������
Ω2

�a2
− �1 − �M2�k2mn

r �
(A1)

A1. Pure Longitudinal Wave

For a pure longitudinal wave,m � n � 0, and kmn � 0, Eq. (A1)
simplifies to
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Fig. 18 Acoustic pressure and velocity distributions of first radial mode at various cross sections in seven-baffle chamber (RD-120 main combustor).
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Fig. 19 Acoustic pressure and velocity distributions ofmixed first tangential/first radial mode at various cross sections in seven-baffle chamber (RD-120
main combustor).
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�α�00�2 � �k�Mα�00�2 (A2)

where k � Ω∕ �a. With �M � 0,

α�00 � ∓k (A3)

An acoustic impedance function can be written as

Z � p
0

u 0
� �ρ �a�R� iY� (A4)

where R and Y are the real and imaginary parts of the impedance,
respectively. Note that the preceding definition does not include γ, as
that in Eq. (28), in order to be consistent with [3] (p. 71).At the
chamber inlet (x � 0), the impedance Z0 is

Z0 �
p 0

u 0

����
x�0
� −�ρ �a

p� � p−

p� − p− (A5)

Equation (A5) can be rearranged to

p− �
�Z0 � 1

�Z0 − 1
p� (A6)

where �Z0 � Z0∕�ρ �a. At the combustor exit (x � L), the impedance
ZL becomes

ZL �
p 0

u 0

����
x�L
� −�ρ �a

p� � p−ei2kL

p� − p−ei2kL
(A7)

Substitution of Eq. (A6) into Eq. (A7) results in

ZL � �ρ �a
�Z0 � i tan�kL�
i �Z0 tan�kL� � 1

(A8)

Here ZL is the transposed impedance of a chamber of length L with
the inlet impedance Z0.

A2. Pure Transverse Wave

For a pure transverse wave without the mean-flow velocity,
Eq. (A1) gives

Ω � �akmn (A9)

where the eigenvalue kmn is determined by either Eq. (23) or Eq. (33).
With the inclusion of the mean flow at a Mach number M, the
condition for a wave propagating at the lowest frequency becomes

Ω∕ �a − kmn
���������������
1 − �M2

p
� 0 (A10)

Rewriting Eq. (A10), the resonant frequency is defined as

fmn �
kmn �a

2π

���������������
1 − �M2

p
(A11)

A3. Mixed Longitudinal-Transverse Wave

For a length L chamber with acoustically closed ends (Z0 → ∞,
ZL → ∞) and in the absence ofmean flow, thewave number becomes

αmn � lπ∕L (A12)

where l stands for the mode number in the axial direction. The wave
number k can be determined by

k2 � k2mn � α2mn � k2mn � �lπ∕L�2 (A13)

Rearranging Eq. (A13), the natural frequencies of mixed
longitudinal-transverse oscillations are

flmn �
kmn �a

2π

�����������������������������
1�

�
lπ

Lkmn

�
2

s
(A14)

To account for a nonzero mean-flow velocity, Eq. (A1) gives

�α�mn � α−mn��1 − �M2� � 2

��������������������������������������
Ω2

�a2
− �1 − �M2�k2mn

r
(A15)

Substitution of Eq. (A12) into Eq. (A15) leads to the natural
frequencies of mixed longitudinal-transverse modes with the effects
of mean flow captured.

flmn �
kmn �a

2π
�1 −M2�

������������������������������������������
1

1 −M2
�
�
lπ

Lkmn

�
2

s
(A16)

A4. Waves in Chambers with Baffle Blades

The following assumptions are made:
1) The frequency is lower than the frequency of a purely transverse

mode mn.
2) Pure longitudinal oscillations are realized within baffle

compartments.
3) Acoustic impedance at the injector face plate is infinitely high.
4) The mean flow in baffle compartments is neglected.
The impedance at the baffle edge is defined as

Zc �
Scp

0

u 0
(A17)

whereSc denotes the cross-sectional area of the combustion chamber.
Substituting Eqs. (14–16) into Eq. (A17) and manipulating the result
yields

Zc � i
Sc �ρc �acΩ������������������������
k2mn �a

2
c − Ω2

p � i Sc �ρc �ac
�Ωmn�����������������

1 − �Ω2
mn

p (A18)

where �Ωmn � Ω∕�kmn �ac� is the normalized frequency of the
�m; n�th mode.
Because pure longitudinal oscillations are assumed in baffle

compartments, the acoustic impedance at the baffle exit can be
determined from Eq. (A8),

Zb � Sb �ρb �ab
�Z0 � i tan�kLb�
i �Z0 tan�kLb� � 1

(A19)

where Sb denotes the cross-sectional area of the baffle compartments
and k � Ω∕ �ab. Application of the condition �Z0 → ∞ to Eq. (A19)
results in

Zb � −iSb �ρb �ab∕ tan�kLb� (A20)

Defining the normalized baffle length �Lb � Lb∕Rc and the ratio of
sound velocities in the compartments to that in the main chamber
αb � �ab∕ �ac, the following is obtained:

kLb � Rckmn �Lb �Ωmn∕αb (A21)

Equation (A21) is substituted into Eq. (A20) to acquire

Zb �
−iSb �ρb �ab

tan�Rckmn �Lb �Ωmn∕αb�
(A22)

The imaginary part of the impedance taken from the chamber inlet in
the positive x direction is equal to that taken from the chamber exit in
the negative x direction. This condition can be written as

iY�x� � iY�L − x� (A23)
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where Y�x� is the imaginary part of the transposed impedance as a
function of the axial coordinate x. Applying this condition to
Eqs. (A18) and (A22), the frequency of acoustic waves in baffled
combustion chambers is obtained.

tan

�
Rckmn �Lb �Ωmn

αb

�
� Sc �ρc �ac �Ωmn
Sb �ρb �ab

�����������������
1 − �Ω2

mn

p (A24)
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